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Where we are at

In W5, we introduced message passing and associated proof techniques.

This lecture, we’ll be looking at proof methods for termination.
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Termination

For programs that do terminate, termination is often the most important liveness
property. There are two causes of non-termination: divergence and deadlock.
termination = convergence + deadlock-freedom

Definition

A program is φ-convergent if it cannot diverge (run forever) when started in an initial
state satisfying φ. Instead, it must terminate, or become deadlocked.

To prove convergence, we prove that there is a bound on how many computation steps
remaining computation steps from any state that the program reaches.
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Termination

Algorithm 2.1:
int x

p1: while (x > 0) do
p2: x ← x - 1

Question

This program is (0 ≤ x)-convergent. Why?

Is it >-convergent?
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Termination

Algorithm 2.2:
int x

p1: while (x > 0) do
p2: x ← x - 1

Question

This program is (0 ≤ x)-convergent. Why?
Is it >-convergent?
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Termination

Algorithm 2.3:
int x

p1: while (x < 500) do
p2: x ← x + 1

Question

Is this program φ-convergent? If so, why and for which φ?
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Termination

Algorithm 2.4:
int x

while (x > 0) do while (x < 500) do
x ← x - 1 x ← x + 1

Question

Is this program φ-convergent? If so, why and for which φ?
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Ordered and Wellfounded Sets

The bound condition is formalised by the concept of a wellfounded set.
Recall that, on a set W , the binary relation ≺ ⊆W 2 is a (strict) partial order, if it is

irreflexive (a 6≺ a),

asymmetric (a ≺ b =⇒ b 6≺ a), and

transitive (a ≺ b ∧ b ≺ c =⇒ a ≺ c).

Definition

Partially ordered set (W ,≺) is wellfounded if every descending sequence
〈w0 � w1 � . . .〉 in (W ,≺) is finite.

Note

Realise that infinite ascending sequences are not ruled out.
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WFOs

Example (Wellfounded Orders)

(N, <) is wellfounded.

(N, >) and (Z, <) are not wellfounded.
Lexicographical order: Given two wellfounded sets, (W1,≺1) and (W2,≺2), also
(W1 ×W2, <lex) with

(m1, n1) <lex (m2, n2) iff (m1 ≺1 m2) ∨ ((m1 = m2) ∧ (n1 ≺2 n2))

is wellfounded.
Componentwise order: Given a family (Wi ,≺i )1≤i≤n of wellfounded sets,
(W1 × . . .×Wn, <cw) with

(w1, . . . ,wn) <cw (w ′1, . . . ,w
′
n) iff ∃i . wi ≺i w

′
i ∧ ∀k 6= i . wk �k w ′k

is wellfounded.
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Floyd’s Wellfoundedness Method

Given a transition diagram P = (L,T , s, t) and a precondition φ, we can prove
φ-convergence of P by:

1 finding an inductive assertion network Q : L→ (Σ→ B) and showing that
|= φ =⇒ Qs ;

2 choosing a wellfounded set (W ,≺) and a network (ρ`)`∈L of partially defined
ranking functions from Σ to W such that:

Q` implies that ρ` is defined, and

every transition `
b;f−−→ `′ ∈ T decreases the ranking function, that is:

|= Q` ∧ b =⇒ ρ` � (ρ`′ ◦ f )
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Example 1

Let Σ = [{x} → R]. Observe that (R, <) is not wellfounded.

x ← x − 1

x > 0

x ≤ 0

s

t

`

Transition system P

> x > 0

>

Assertion network

(max(dxe, 0), 1) (max(dxe, 0), 0)

(0, 0)

Ranking functions

WFO (N× N, <lex)
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transition s
x>0−−→ `:

|= >∧x > 0 =⇒ (max(dxe, 0), 1) >lex ((max(dxe, 0), 0) ◦ id)

⇐ |= (dxe, 1) >lex (dxe, 0) ∧ (0, 1) >lex (0, 0) .-

transition `
x←x−1−−−−→ s:

|= x > 0∧> =⇒ (max(dxe, 0), 0) >lex ((max(dxe, 0), 1) ◦ Jx ← x − 1K)

⇐ |= x > 0 =⇒ dxe > dx − 1e ≥ 0 .-

transition s
x≤0−−→ t:

|= >∧x ≤ 0 =⇒ (max(dxe, 0), 1) >lex (0, 0)

⇐ |= (0, 1) >lex (0, 0) .-

. . . shows that P is >-convergent.
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Soundness & Completeness

Theorem

Floyd’s method is sound, that is, it indeed establishes φ-convergence.

19



Termination Deadlock

Theorem

Floyd’s method is semantically complete, that is, if P is φ-convergent, then there exist
assertion and ranking function networks satisfying the verification conditions for
proving convergence.

Note

Recall that one might have to add auxiliary variables to the transition system to be
able to express assertions. Without them, the method is not complete!

“semantically” means that we do not care what language is used to express the assertions and

ranking functions. You may call this cheating.
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Shared Variables

Question

How can we extend Floyd’s method for proving φ-convergence to shared-variable
concurrent programs P = P1 ‖ . . . ‖ Pn?

Answer (simplistic): Construct product transition system, use Floyd’s method on that.
This leads to the usual exponential blowup problem.

Answer (better); find a method that doesn’t require constructing the parallel
composition explicitly, à la Owicki-Gries.
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Local Method for Proving φ-Convergence

Suppose that for each Pi = (Li ,Ti , si , ti ) we’ve found a local assertion network
(Q`)`∈Li , a wellfounded set (Wi ,≺i ), and a network (ρ`)`∈Li of partial ranking
functions. (Possibly introducing auxiliary variables.)
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1 Prove that the assertions and ranking functions are locally consistent, i.e., that ρ`
is defined whenever Q` is true.

2 Prove local correctness of every Pi , i.e., for `
b;f−−→ `′ ∈ Ti :

|= Q` ∧ b =⇒ Q`′ ◦ f
|= Q` ∧ b =⇒ ρ` �i (ρ`′ ◦ f )

3 Prove interference freedom for both local networks, i.e., for `
b;f−−→ `′ ∈ Ti and

`′′ ∈ Lk , for k 6= i :

|= Q` ∧ Q`′′ ∧ b =⇒ Q`′′ ◦ f
|= Q` ∧ Q`′′ ∧ b =⇒ ρ`′′ �k (ρ`′′ ◦ f )

4 Prove |= φ =⇒
∧

iQsi .
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Example 2

Let Σ = [{x} → N]. Again, show >-convergence.

x > 0; x ← x − 1

x ≤ 0

s1

t1

`1

P1:

s2

t2

x ← 0

P2:

x = 0 x = 0

(x , 1) (x , 2)

(0, 0)

WFO (N× N, <lex)

1

0

WFO (N, <)

The resulting 8 + 9 proof obligations are easily checked.
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Soundness & Completeness

Theorem

The local method is again sound and semantically complete (with auxiliary variables).
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Convergence à la AFR I

To prove that a synchronous transition diagram P = P1 ‖ . . . ‖ Pn (where the
Pi = (Li ,Ti , si , ti ) have the usual restrictions) is φ-convergent, follow the AFR
method1 and then: choose WFO’s (Wi ,≺i ) and networks (ρ`)`∈Li of local ranking
functions only involving Pi ’s variables and prove that

1 both networks are locally consistent: for all states σ

σ |= Q` =⇒ ρ`(σ) ∈Wi .

2 for all internal `
b;f−−→ `′ ∈ Ti :

|= Q` ∧ b =⇒ ρ` �i (ρ`′ ◦ f )
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Convergence à la AFR II

3 local ranking functions cooperate, namely, for every matching pair

`1
b;C⇐e;f−−−−−→ `2 ∈ Li and `′1

b′;C⇒x ;f ′−−−−−−→ `′2 ∈ Lk , with i 6= k show:

|= I ∧ Q`1 ∧ Q`′1
∧ b ∧ b′ =⇒ ((ρ`1 , ρ`′1) >cw (ρ`2 ◦ g , ρ`′2 ◦ g)) ,

where g = f ◦ f ′ ◦ Jx ← eK.

1You may ignore the step where we establish the post-condition from the exit state annotations.
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Example 4

Let Σ = [{x , y} → R]. Precondition: y ∈ N.

x > 0; x ← x − 1

x ≤ 0

s1

C ⇒ x

`1

t1

`′1

P1:

s2

t2

C ⇐ y

P2:

x ∈ N x ∈ N

(1, 0, 0)

(0, x , 1)

(0, x , 2)

(0, 0, 0)

WFO (N3, <lex)

1

0

WFO (N, <)
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Deadlock Classes

A program is deadlocked if some of its processes are not terminated, yet none of its
processes can do anything. In our setting, there are two causes:

Message deadlock: A process blocks on a receive (or synchronous send), but no
communication partner will ever come around.

Resource deadlock: All outgoing transitions are guarded, but none of the guards will
ever become true.
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Deadlock-Avoidance by Order

A simple resource acquisition policy can be formulated that precludes resource
deadlocks by avoiding cycles in wait-for-graphs.

From [wikipedia]

[. . . ] assign a precedence to each resource and force processes to request resources in
order of increasing precedence.

This is a common solution in operating systems and databases. (cf. dining
philosophers).
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Deadlock-Avoidance by Resource-Scheduling

Around 1964 Dijkstra described a Banker’s Algorithm to overcome a problem he called
deadly embrace. It requires both the number of processes and their resource needs to
be static. It boils down to granting resources only if all resources a process needs can
be granted at that time to avoid entering unsafe states in which more than one process
holds partial sets of resources.
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Deadlock for Transtion Diagrams

A transition `
b;f−−→ `′ is enabled in a state σ if σ |= b.

A process is blocked in state σ at location ` if:

1 It has not terminated (` 6= t)

2 None of the transitions from ` are enabled in σ.

A concurrent program is deadlocked if some of its processes are blocked, and the
remaining ones have terminated.

How can we prove deadlock-freedom?

40



Termination Deadlock

Characterisation of Blocking

Let P = P1 ‖ . . . ‖ Pn, its precondition φ, and assume that for each process
Pi = (Li ,Ti , si , ti ) of P there is a local assertion network (Q`)`∈Li that is inductive,
interference free and where the precondition φ implies the entry location annotations.

Process Pi can only be blocked in state σ at non-final location ` ∈ Li \ {ti} from which
there are m transitions with guards b1, . . . , bm, respectively, if σ |= CanBlock`, where

CanBlock` = Q` ∧ ¬
∨m

k=1bk .
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Characterisation of Blocking cont’d

Consequently, using predicates

Blockedi =
∨

`∈Li\{ti}CanBlock`

deadlock can only occur in a state σ if

σ |=
∧n

i=1(Qti ∨ Blockedi ) ∧
∨n

i=1Blockedi

holds. (Every process has terminated or blocked and at least one is blocked.)
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Owicki/Gries Deadlock-Freedom Condition

|= ¬ (
∧n

i=1(Qti ∨ Blockedi ) ∧
∨n

i=1Blockedi ) DFC

ensures that P will not deadlock when started in a state satisfying φ.
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Example 3

Prove deadlock freedom of this program:

s1

t1

s2

`2

t2

P2:P1:

⊥
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Soundness & Completeness

Theorem

The Owicki/Gries method with the last condition replaced by the deadlock-freedom
condition is sound and semantically complete for proving deadlock-freedom relative to
some precondition φ.
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Deadlock-Freedom for Synchronous Message Passing

An I/O transition can occur iff the guards of both (matching) transitions involved hold.
For a global configuration2 〈`;σ〉 define

σ |= live ` iff

{
>, if all local locations are terminal

a transition is enabled in 〈`;σ〉, otherwise.

If we can show that every configuration 〈`;σ〉 reachable from an initial global state
(satisfying φ if we use a precondition) satisfies σ |= live `, then we have verified
deadlock freedom.

2A global configuration is a pair consisting of a state giving values to all variables and a tuple of
local locations, one for each diagram.

48



Termination Deadlock

Deadlock-Freedom à la AFR
For n ∈ {1 . . . n} let Pi = (Li ,Ti , si , ti ) such that the Li are pairwise disjoint and the
processes’ variable sets are pairwise disjoint.
To prove that the synchronous transition diagram P is deadlock-free, relative to
precondition φ:

1 Follow the AFR method, but skip the point where the postcondition is established.

2 Verify the deadlock-freedom condition for every global label
〈`1, . . . , `n〉 ∈ L1 × . . .× Ln:

|= I ∧
∧

iQ`i =⇒ live 〈`1, . . . , `n〉 .

Note

This method generates a verification condition for each global location, i.e.,
|L1 × . . .× Ln| =

∏n
i=1 |Li | many.
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Example 4 cont’d

x > 0; x ← x − 1

x ≤ 0

s1

`1

t1

`′1

P1:

s2

t2

P2:

C ⇒ x C ⇐ y

I = (k1 = k2).
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Soundness & Completeness

Theorem

The methods are once again sound and semantically complete (with auxiliary
variables).

—end—
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Soundness & Completeness

Theorem

The methods are once again sound and semantically complete (with auxiliary
variables).

—end—

54



Termination Deadlock

What Now?

We’ll look at a compositional proof methods, reasoning about asynchronous
communication, and, time allowing, we’ll talk about process algebra.

Then, the remainder of the course is about distributed algorithms.

Assignment 1 is out! You should probably be working on it..
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